An Optimization Framework with Flexible Inexact Inner Iterations for Nonconvex and Nonsmooth Programming
نویسندگان
چکیده
In recent years, numerous vision and learning tasks have been (re)formulated as nonconvex and nonsmooth programmings (NNPs). Although some algorithms have been proposed for particular problems, designing fast and flexible optimization schemes with theoretical guarantee is a challenging task for general NNPs. It has been investigated that performing inexact inner iterations often benefit to special applications case by case, but their convergence behaviors are still unclear. Motivated by these practical experiences, this paper designs a novel algorithmic framework, named inexact proximal alternating direction method (IPAD) for solving general NNPs. We demonstrate that any numerical algorithms can be incorporated into IPAD for solving subproblems and the convergence of the resulting hybrid schemes can be consistently guaranteed by a series of simple error conditions. Beyond the guarantee in theory, numerical experiments on both synthesized and real-world data further demonstrate the superiority and flexibility of our IPAD framework for practical use.
منابع مشابه
Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کاملScalable nonconvex inexact proximal splitting
We study a class of large-scale, nonsmooth, and nonconvex optimization problems. In particular, we focus on nonconvex problems with composite objectives. This class includes the extensively studied class of convex composite objective problems as a subclass. To solve composite nonconvex problems we introduce a powerful new framework based on asymptotically nonvanishing errors, avoiding the commo...
متن کاملLinearly Constrained Nonsmooth and Nonconvex Minimization
Motivated by variational models in continuum mechanics, we introduce a novel algorithm for performing nonsmooth and nonconvex minimizations with linear constraints. We show how this algorithm is actually a natural generalization of well-known non-stationary augmented Lagrangian methods for convex optimization. The relevant features of this approach are its applicability to a large variety of no...
متن کاملAccelerated Proximal Gradient Methods for Nonconvex Programming
Nonconvex and nonsmooth problems have recently received considerable attention in signal/image processing, statistics and machine learning. However, solving the nonconvex and nonsmooth optimization problems remains a big challenge. Accelerated proximal gradient (APG) is an excellent method for convex programming. However, it is still unknown whether the usual APG can ensure the convergence to a...
متن کاملPenalty Dual Decomposition Method For Nonsmooth Nonconvex Optimization
Many contemporary signal processing, machine learning and wireless communication applications can be formulated as nonconvex nonsmooth optimization problems. Often there is a lack of efficient algorithms for these problems, especially when the optimization variables are nonlinearly coupled in some nonconvex constraints. In this work, we propose an algorithm named penalty dual decomposition (PDD...
متن کامل